New Car Review Areas


General Car Topics

Bugatti Veyron 16.4: The countdown is running


March 2005
 Filed under: VOLKSWAGEN CORPORATE Car News | VOLKSWAGEN CORPORATE Headlines

Trial runs in full swing • Pre-run model production has begun • Series production is imminent.

Molsheim, 1. March 2005 - The development procedures adopted at the start of 2004 for the Bugatti Veyron 16.4 are on schedule. Four exceptional sports cars are still involved in endurance test runs and fine-tuning. In parallel, production of pre-run models has begun at the studio in Molsheim, France. Start of production of the pilot lot is planned for the beginning of May. The relevant processes are ready for the start of production.
The technical data of the Bugatti Veyron 16.4 mark an unprecedented level in series production. The superlative sports car is fitted with an 8.0 l W16 engine, 64 valves and four turbochargers. It has an output of 1001 PS (736 kW) and a maximum torque of 1 250 Nm (127 mkp) at 2 200 rpm. The two-seater made of high quality light-weight material will reach a top speed of over 400 km/h.

The first Bugatti Veyron 16.4s will be handed over to an exclusive clientele in the second half of 2005.

Bugatti Veyron 16.4: The best brakes in automotive engineering

Unique cooling system for extremely fade-resistant carbon-ceramic brake system

Airbrake applied above 200 km/h uses the aerodynamics of the rear wing

The Bugatti Veyron, one of the fastest cars of all time, will be making its debut this year. A top speed of over 400 km/h influences the design of every engine and running gear component. This maximum speed is the standard that each and every solution has to achieve. For example: the carbon-ceramic brake system, many components of which are unique. Certain components were developed in cooperation with development partners from the aviation and space industries. Experiencing the brake system in action is just as enjoyable as experiencing the acceleration of the Bugatti. The addition of the airbrake, an aerodynamic rear-wing braking function which is deployed above speeds of 200 km/h, gives the vehicle deceleration values which cannot be experienced in any other car in series production.

Brake pressure of up to 180 bar

The brake forces are distributed with a maximum of sixty percent on the front axle and forty percent on the rear axle. The system is capable of a brake pressure of 180 bar. Braking to the ABS control range requires 50 to 70 bar in a Bugatti Veyron with standard tyres – a difference of over 100 bar from the top performance of 180 bar, an indication of the high braking potential.

Carbon discs, titanium brake pistons

The carbon disc brakes have a diameter of 400 millimetres in the front (rear: 380 millimetres). The eight-piston monobloc brake caliper weighs only 5.7 kilograms, is reinforced with a centre fin and has four brake pads. Its pistons are made of titanium and are fitted with a stainless steel crown and ceramic heat shield. The pad friction area totals “4 x 80 cm2”. The grooves in the discs for air cooling are not straight but have a turbine-shaped structure so that they are able to draw in cooling air while the vehicle is in motion.

From 310 km/h to 80 km/h and back repeatedly without fading! In addition, the front disc brakes, which are have higher demands placed on them, are maintained at a constant ideal temperature even under maximum loading by a completely new type of dynamic pressure cooling. An example from the prototype trials: during a brake fade test with 1.0 g* repeated braking from 310 km/h to 80 km/h (acceleration from 80 km/h to 310 km/h + subsequent braking in only 22 seconds per cycle in total!), a thermal equilibrium was achieved after braking for the twentieth time – even then, the brake fluid temperature stayed below the defined 220°C level and the top surface of the discs below a 1 000°C limit. The technical structure of the air supply is unique in this context:

Unique dynamic pressure cooling

To achieve the greatest possible dynamic pressure and therefore make use of high volumes of air, the cooling air stream enters a duct located in the best possible position in the front of the car. On the way to the brakes, the air also cools the front differential of the four-wheel drive and the battery as it flows past. The air stream then flows from the centre of the vehicle towards the carbon discs and pads. Just before the air flows around both of these it meets a unique component which guarantees the stability never before achieved in this type of brake system: a FroSt swivel bearing (Flow Rotating System) with a special air duct with a tapering spiral and allows for a large amount of air flow in a narrow space.

The air flows into the swivel bearing and into the increasingly small space, accelerates with a swirl towards the rotating brake discs and is then released back into the open air through the turbine-shaped vanes inside the discs as a turbulent current. A side stream is also directed through small ducts in the stainless steel crowns of the disc on the surface of the disc and through an air outlet in the swivel bearing directly onto the caliper and the pads.

Rear-wing becomes airbrake in 0.4 seconds

As previously mentioned, the rear wing functions as an airbrake, optimising braking performance at speeds above 200 km/h. The wing is then angled at 70 degrees in less than 0.4 seconds, which has several consequences. Firstly: the rear axle downforce is increased, therefore improving the distribution of the brake force between the front and rear axles. Secondly: air resistance is increased, as in an aeroplane when landing. The airbrake alone produces a maximum deceleration of 0.6 g* at high speeds. It is activated via the brake pedal. The wheel brakes themselves achieve – with standard tyres on appropriate road surfaces – deceleration values of around 1.3 g*. With full brake application at 400 km/h, the Bugatti Veyron would come to a standstill in considerably less than 10 seconds!

Handbrake with ceramic brake pads.

Another innovative detail is the handbrake. Bugatti has installed a separate brake caliper here, as is customary in sports cars. However, the fact that this component is operated electronically and has full ABS function together with a parking brake auto release system makes it unique. In the highly unlikely event of a fault with the main brakes, the driver would be able to bring the Bugatti Veyron to a safe and stable stop below a certain speed limit, even on a surface with varied friction values (for example, ice on the right, dry as a bone on the left). What is more, this caliper is fitted with wear-resistant ceramic brake pads designed to last for the complete life-time of the vehicle.

ESP as a safety and dynamics factor.

It is clear that Bugatti has designed an ESP brake system which corresponds to the high performance reserves of the Veyron completely. Thanks to a complex and intelligent mechatronic system to activate the rear differential lock and the front four-wheel drive, the Bugatti Veyron is entering driving dynamics territory still uncharted even by racing cars. A progressive ESP system ensures that the exceptional sports car can still complete its laps safely even if the dynamic limits already appear to have been exceeded. On the one hand, it is based on familiar features; on the other hand, it has numerous new functions developed specifically for the Veyron. And this is true of the full speed range! A crucial factor in this is that the brake electronics do not restrict the outstanding driving performance, but rather they improve the lap times which can be achieved on the world’s really fast and appealing circuits.

* g = gravitational acceleration m/s2

Latest VOLKSWAGEN CORPORATE Headlines

Latest Car News

All images courtesy of and copyright their respective manufacturers, unless otherwise indicated. They may not be reproduced or retransmitted in any way without the express written permission of their respective owners. All trademarks are the property of their respective owners. Model news and specifications are presented as provided by manufacturer, and do not necessarily reflect the opinions of DIGIADS. No warranty is made by DIGIADS with respect to the accuracy or timeliness of the information contained herein.